China Custom Radio 4: 1/5: 1/7: 1/10: 1 China Supplier NEMA 24 Plf60 Arcmin <10 Planetary Reducer Speed Motor Gearbox with Best Sales

Product Description

 

Products Description

Product Paramenters

  MODEL                                                          PLE60 Reduction ratio Number of stage
Nominal Output Torque N.m 16 3 L1
25 1
28 5
20 7
10 10
30 16 L2
30 20
32 25
30 28
16 30
30 35
25 40
25 50
20 70
10 100
Sudden Stop Torque N.m 2 times of nominal output torque
Nominal Input Speed rpm 1000
Max Input Speed rpm 2000
Max Radial Load N 400
Max Axial Load N 230
Efficiency % 96 L1
92 L2
Backlash arcmin ≤15 L1
≤20 L2
Noise dB ≤55
Protection Level IP 54
Life Span h 20000
Working Temp. -20°~+150°
Lubrication Method   Permanent Lubrication
Weight kg ≈0.70 PLE60-L1
≈0.90 PLE60-L2
≈080 PLE60-L1SW/SW50/R6.3/R10
≈1.05 PLE60-L2SW/SW50/R6.3/R11

 

Company Profile

Certifications

Exhibition

Product packaging

FAQ

1. Do you have online contact info?
 

2. How can we know the product quality?
A2: We suggest you to order a sample. Also, you can send us email for detail photos for checking if you cannot get enough information in the product page.

3. Is this your final price? May i have the discount?
A3: Our price is the factory price, and if your quantity is larger, we will allow the discount for you.

4.Is there cheap shipping cost to import to our country?
A4: Yes, we have our regular shipping company, they have very good price.

5. Can we visit your factory?
A5: Yes welcome warmly. No. 295, Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis. Town, Xihu (West Lake) Dis., HangZhou City, ZheJiang Province, China.

6.What is the Warranty for your products?
A6: All products product warranty for 1 year, free service for 14 years.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Planetary Reducer
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Three-Step
Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

<img src="https://img.hzpt.com/img/gearbox/gearbox-l1.webp" alt="China Custom Radio 4: 1/5: 1/7: 1/10: 1 China Supplier NEMA 24 Plf60 Arcmin <img src="https://img.hzpt.com/img/gearbox/gearbox-l2.webp" alt="China Custom Radio 4: 1/5: 1/7: 1/10: 1 China Supplier NEMA 24 Plf60 Arcmin
editor by CX 2023-10-23