China Good quality CZPT Concrete Mixer Gearbox Model Tj31br2/511r2 for Mao 4500/3000 car gearbox

Product Description

 

Product Description

SICOMA Concrete Mixer Gearbox Reducer planetary gearbox for concrete mixed, marble

The reducer is a closed helical gear with a hollow input.

The gear is directly installed on the input shaft of the gear and supported by the motor mounting bracket installed on the machine casing.   

No additional parts are required to transmit torque from the reducer to the equipment.   It can be installed in vertical, horizontal, or inclined positions.

Compact dimensions
Extending undercarriage 
Safety frame
Simple control
Easy maintenance
Versatility
Extending undercarriage

Detailed Photos

 

Commonly used models: 
313
318 318WG 318WQ 513WG 
2259 2259S /2262WG
EC2150 EC2250 EC2252 EC2322

 

Product Parameters

 

Model 309 310 311
Max.Output Torque(N.M) 16000 25000 40000
Speed Ratio 28/32.6 38/32.6 32.7
Recommended Motor 30 37 55
Max. input speed 2500 2000 2000

 

Our Advantages

Standard design, one-stage reduction, hardened gears.

Small volume, compact installation position, and easy maintenance.

Good sealing, low noise.

Heavy-duty design, tooth shape by the grinding process, with high torque, low noise, durability, etc.

Services

Q1: Are you a trading company or manufacturer?
A: We are a professional concrete batching plant manufacturer and have an international trade department.

How about the quality of your products?
A: Our machines are manufactured strictly according to national and international standards, and we take a test on each equipment  before delivery. You can also use Trade Assurance by Alibaba for product quality protection, on-time shipment protection, and payment protection. Chinese top brands or world grade brands like CZPT motors etc are equipped

Q3. What are your terms of packing?
A: Generally, we pack our goods with PE films and plywood boxes. If you have a legally registered patent,
we can pack the goods in your branded boxes after getting your authorization letters.

Q4. How about your delivery time?
A: Generally, it will take 10 to 20 days after receiving your advance payment. The specific delivery time depends
on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce your samples or technical drawings. We can build the molds and fixtures.

Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Conical – Cylindrical Gear
Step: Stepless
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Impact of Temperature Variations and Environmental Conditions on Planetary Gearbox Performance

The performance of planetary gearboxes can be significantly influenced by temperature variations and environmental conditions. Here’s how these factors impact their operation:

Temperature Variations: Extreme temperature fluctuations can affect the lubrication properties of the gearbox. Cold temperatures can cause the lubricant to thicken, leading to increased friction and reduced efficiency. On the other hand, high temperatures can cause the lubricant to thin out, potentially leading to insufficient lubrication and accelerated wear.

Environmental Contaminants: Planetary gearboxes used in outdoor or industrial environments can be exposed to contaminants such as dust, dirt, moisture, and chemicals. These contaminants can infiltrate the gearbox and degrade the quality of the lubricant. Additionally, abrasive particles can cause wear on gear surfaces, leading to decreased performance and potential damage.

Corrosion: Exposure to moisture, especially in humid or corrosive environments, can lead to corrosion of gearbox components. Corrosion weakens the structural integrity of gears and other components, which can ultimately result in premature failure.

Thermal Expansion: Temperature changes can cause materials to expand and contract. In gearboxes, this can lead to misalignment of gears and improper meshing, causing noise, vibration, and reduced efficiency. Proper consideration of thermal expansion is crucial in gearbox design.

Sealing and Ventilation: To mitigate the impact of temperature and environmental factors, planetary gearboxes need effective sealing to prevent contaminants from entering and to retain the lubricant. Proper ventilation is also essential to prevent pressure build-up inside the gearbox due to temperature changes.

Cooling Systems: In applications where temperature control is critical, cooling systems such as fans or heat exchangers can be incorporated to maintain optimal operating temperatures. This helps prevent overheating and ensures consistent gearbox performance.

Overall, temperature variations and environmental conditions can have a profound impact on the performance and lifespan of planetary gearboxes. Manufacturers and operators need to consider these factors during design, installation, and maintenance to ensure reliable and efficient operation.

planetary gearbox

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes

Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:

1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.

2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.

3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.

4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.

5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.

6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.

7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.

8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.

By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.

China Good quality CZPT Concrete Mixer Gearbox Model Tj31br2/511r2 for Mao 4500/3000   car gearbox	China Good quality CZPT Concrete Mixer Gearbox Model Tj31br2/511r2 for Mao 4500/3000   car gearbox
editor by CX 2024-01-02